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SUMMARY

A method 1s developed consilstent with the assumptions of small
perturbation theory, which provides a means of determining the down—
wash behind a wing in supersonic flow for a known load distributlon.
The analysils 1s based upon the use of supersonic doublets which are
digtributed over the plan form and wake of the wing in a manner
determined from the wing loading.

The first application of the method proves the equivalence in
subsonic and supersonic flow of the downwash at infinity correspond-
ing to a glven load distribution. The principal application in this
report 1is concerned with the downwash behind a trlangular wing with
leading edges swept back of the Mach cone from the vertex. A complete
solution is glven along the center line of the wake and an approxims—
tion provided for poilnts In the vicinity of this line.

INTRODUCTION

The linearization of the partial differential equation satlisfied
by the velocity potential for compressible flow ylelds, for subsonic
flight speeds, an elliptic—type equation which is reducible by means
of an elementary transformation to the basic equation in Incompressible
flow. As a consequence of this result, wing theory in the subsonic
realm employs the sams concepts and same types of analyses that
belong to classical incompresslble theory. At supersonic speeds, the
differential equation for the velocity potential is hyperbolic in type
and for wing theory 1s equivalent mathematicelly to the two—dimensional
wave equation of physics. In spite of the different character of the
basic differential equation in the two Fflight regimes, certain formal
equivalencles can be get up which are intultlvely useful in the solu-—
tion of specific problems. In particular, the velocity potentials
of a three—dimensionsl source and of a doublet each have analogous
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forms in the two cases. The solutlon of different boundary—value
problems encountered in wing theory has been discussed iIn reference
1, and 1t has been shown how suitable distributions of sources and
doublets may be used to determine the flow potentlal assoclated
with a given lifting or nonlifting wing.

The calculation of downwash behind a wing, for incompressible
flow, relies almost exclusively on the use of Prandtl's lifting-line
theory which is, in turn, developed from the concept of a single
horseshoe vortex. The conventional approach to the general down—
wash problem is to determine, first, the induced fleld of the simple
horseshos vortex by means of the Blot-Bavart law and, then, from a
knowledge of the spanwise distribution of loadling over the wing, to
calculate finally the induced field produced by a vortex sheet
composed of superimposed vortices of varying span.

When downwagh calculatlions are to be extended to the case of
supersonlc wings, it appears at flrst that the use of vortex sheets
la completely inadmissible since no equivalent to the Blot-Savart
law exlsts. It 1ig, in fact, true that the horseshoe vortex no
longer plays the outstanding role 1t has at low speeds. However,
when a more detailed investigation is made of the underlying anaslysis,
it becomes apparent that vortex theory and the Biot—HBavart laew can
be developed from the inltial use of & constant distribution of
doublets over a glven surface. (E.g., gee references 2 and 3.) Thess
doublets produce a discontinulty In the veloclty potential at the
surface, and, for incompressible theory, the curve which bounds the
surface can be idsntified with a vortex curve possessing circulation.
The proof of the Blot—Savart law and the Introduction of voritex sheets
are direct consequences of these basic ideas.

Since, as was shown Iin reference 1, supersonic boundary—value
problems involving sources, sinks, and doublsts can be solved in a
manner analogous to that used in low—speed theory, a method is
therefore provided for an attack on the downwash problem for
supersonic plan forms through the use of doublet distrlbutions.

The present report has two principal aimg: First, to outline
in some detall the theoretical approach to the determination of the
veloclty potentiel of the flow field associated wlth a supersonic
lifting surface and the subsequent calculation of the downwash; and,
gecond, to epply the theory to the case of & triangular wing swept
back of the Mach cone and to present the resulis of the complete
calculations along the center line and in the plane of the wing.
Downwash Immediately back of the trailing edge and at an infinite
distance behind the wing will also be derived and 1s in agreement
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with the previously published results of P.A. Lagerstrom (reference
4), The final portion of the analysis will treat the variation of
downwash near the center line of the triangular wing.

In the theoretlcal portion of the report, the boundary-value
problem will be introduced end the solutions, obtained from Green's
theorem, will be glven for low—speed and supersonic flow. Imn the
section of the report devoted to applications, the theory willl be
used first to evaluate the potential function at an infinite
distance downstream from & lifting wing. Since the mathematical
problems arising in the physilcally obvious case of the unswept wing
of infinite span correspond closely to those for the more general
cage, the theory ls next applied to thils case. From this applice—
tion, a general procedure 1ls developed for treating wings with
supersonic tralling edges. The final application of the report
will be devoted to the triangular wing. In all of these applicatioms,
1t will be seen that the analytic expressions which have been obtained
in supersonic theory for the load distributlons over certain plan
forms afford a means whereby the chordwise distribution of preasure
may be introduced into the analysis, and, therefore, such expedlents
as lifting-line theory are no longer so essential.

No attempt will be made here to dlscuss the effect of airfoll
thickness on the downwash distrilbution, although this effect is
actually simpler to treat mathematically. It suffices to state
that the entire theory 1s postulated on the assumptions of thin—
alrfoll or small-perturbation theory and that, consequently, thick—
ness effects and lifting—plate solutioms are additive. For the
results that are glven In the plane of the airfoll, the thickmess
effect, which 1s necessarily symmetrical with respect to this plane,
is zero.

LIST OF IMPORTANT SYMBOLS

8q velogity of sound In the free stream
b wing span
Co root chord of wing

E,Ey,E, ,Ep coamplete elliptic integrals of the second kind with
modull k, ko, ki, ko, respectively

2aV,
EOB
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16,2 -
6o
Xo—l
Xo—1l
8o

complete elliptic integrals of. the filrst kind with
modull k, ko, respectively

v

free—gtream Mach number (a—°>
o]

gtatic pressure

Dy—Pu

dynamic pressure <%po\f°2>

J(x=21) 24 (331 ) 2+(2—2,) 2

1/(15—151) 2r(y—y1) 3422

o (xx1) 282(5—7,) 2p2(2—2,) 2

V(3 ) 22 (3—3, ) 3B 222

perturbation velocity components in the direction
of the x~, y—, z—axes, resgpectively

uu—uz
freoe-—stream velocity

z—compcnent of veloclty induced by doublet distribution
over plan form

z—component of veloclty induced by doublet distribution
over wake

Carteslan coordinates of an arbilitrary point

Carteslan coordinates of source or doublet position
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Zo

Adg

Subscripts
u

1

L.E,

T.El

1620

x/co
By/co
Bz/cq
angle of attack

N/ M2

gemivertex angle of trlangular wing

Bya
cobo

B tan ©
Mach angle (a.rc sin %4)
density in free stream

perturbation veloclty potential

Q2

sign denoting finite part of integral (egquations
ﬁo) and (11))

conditions on upper portlion of surface
;onditions on lower portion of surface
conditionsg at leading edge

conditions at trailllng edge

refers to wake

refers to plan form

conditions on discontinuity surface (at z;=0)
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Reglons
I,II,IIT 1integration regions on plan form (fig. 4)

A,B regions in weke of triangulaer wing (fig. 5)

THEORY
Boundary Conditiong

The proposed problem 1s one of finding the downwash behind a
flat plate which supports a loading conslstent with its angle of
attack and plan form. It will be assumed throughout the analysis
that thlae load dilsgtribution 1s known. Such values were glven for
geveral plan forms in reference 5 and further results can be found
In the literabture on supersonic wings.

The load distribution over the wing may be obtalned from a knowl-
odge of the differences In pressures acting on the lowsr and upper
surfaces. Moreover, in thiln-alirfoill theory, where boundary condltions
are given In the 2 = O plane (i.e., the plane of the wing), a simple
relaetion exlsts between local-pressure coefficlent and the streamwlse
component of the perturbation velocity. Thus, assuming that the free—
stream direction coincides with the positive x—axis (fig. 1), and
denoting by u the x—component of the perturbation veloclty, it
follows that

Ap  p,-d 2 24u .
a 9 Yo . ¥

where the variables are defined In the table of the symbols.
Furthermore, from the definition of the perturbation veloclity poten—
tial ¢ - . - )

) =Lé:x udx (2)

where a 18 a point in a region at which the potentlal 1s zero.
Combining equations (1) and (2), the jump in potential in the plane
z=0 can be determined by integrating the Jump in the wu Induced
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veloclty or, what amounts to the same thing, the Jump in load coeffi-— .
clent. Thus,

X v X AP
AD =f Mugdx; = = <—-> ax (
s~ Jre, 7% JuE. q * 3)

where the Integration extends from the leading edge to the polint x
and A0g represents the Jump in ¢ in the xy—plane. Since load
coeffliclent Ap/q must be zero off the wing and since u 1s an odd
function in z, the value of u must be zero for all points off

the wing in the xy—plane. It follows that Mg remains constant

at a given span statlon for all values of x beyond the trailing-
edge position.

FPigure 1 Indicates an arblirary lifting surface in the z=0
plane together with the distributlion of A®s for given constant
values of y and x. In both subsonlc and supersonic theory, the
wing together with the semi—infinite strip extending downstream of
the wing form a discontinuity surface for the veloclty potential,
while A®0y 1s equal to O +throughout the>remeining portion of the
Xy—plane. These conditlons, together with the fact that the.vertical
Induced veloclty w 1s a continuous function at 2z=0, are sufficient
to determine ® throughout space. The values of u, v, and w can then
be found from the corresponding partial derivatives of ¢ wilth respect
to x, ¥y, and z. The attention in the present report 1s centered on
w, the downwash functlon.

Solution to Boundary—Velue Problem

In reference 1, the solutions for boundary—value problems of
the type under consideration were glven for both Incompressible and
supersonic theory. The basic differentlal equations satisfled by
the perturbation veloclty potentlal are, for the two cases, respectively,

3% 3% %
+ =0 ' (%)
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3% 3% %
BE g =g~ 5 =0 (5)
ox oy oz2

Iggmregsible theory.— For boundary conditions prescribed in

the = 0 plane; the solution of equation (&) is

1 1 /3y O d 1
® (x,¥,2) = -Hff[E.(&I-BZ— —(%‘_%)(32—1 ;)s]dxldﬁ. (6)
where

r = of (x-x1 ) 24 (3—31) 2+ (221 ) 2

and T 1s the area for which the Integrend does not vanish. The
ll-:i’Lrs d 1{-:( 82—1% ; are equal to the velocity potential
at x,y,z of a unit source and doublet situated at the point
X9,¥1,0. The remeining terms In the integrand, which_determine the
distribution of source and doublet strengths, must be found from
known boundary conditions. If a lifting surface fixes the boundary
conditions, induced vertical velocitlies on the upper and lower
faces of the surface are equal so that

terms

BQu Bd’z .

le le

and

o (x,5,2) = —f f <3_z;|__ yA dx3dy: (7

Equations (6) and (7) are well known in potential theory (refer—
ence 3, p. 60), but the derivation usually employs the assumption
that the value of ® 18 zero at all points infinitely distant from
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the wing. This assumption cannot, of course, be made in aerodynamic
applications where the discontinuity surface T extends to x = o,
as In the case of a lifting wing or 1lifting line with trailing
vortices. These latter problems, with which this report ils directly
concerned, are of such a nature, however, that the induced effects
at an Infinlte distence are confined to the plane x = «». An Investi-
gation of the derivation of equation (6) vreveals that the conditions
imposed on ®, in general, can be relaxed sufficiently to permit a
discontinulty in a strip of finite width along the entire extent of
the x—axls. The mathematical detalls of the derivation will not be
given here but a statement of the restrictions on & at iInfinity is

worthwhile, Thus, denoting by gf the directlonal derlvative of ©

taken normal to a prescribed surface, the following conditions
apply:

o0
l. The functions ¢ and g;- are zero at all points

having radius vectors which make finite (nonzero) angles:
wilth the positive x—axis, the points lying on & spherical
surface of Infinite radius with center at the wing. (This
preserves the usual potentlial theory assumptions except
over the portion of the spherical surface whilch forms the
plane X = c.)

od

2. The values ¢ and S_ are bounded at all points
bd

Infinitely distant from the 1lifting surface and at a non—
infinite distance from the positive x—exis. (This condition

o}
places restrictions on the values of ¢ and g— In the

vlane x = =.) x

Conditions (1) and (2) are satisfied for a lifting surface of
finite span, and equation (7) 1s consequently applicable’ directly
to the determinatlon of the veloclty potential. As an application
of the equetion, suppose a sheet of horseshoe vortices is siltuated
as In flgure 2 with bound vortices placed on the y-axis, trailing
vortices extending parsllel to the positive x—axis, and has a span—
wise distribution of circulation Ad gymmetrical to the xz—plane
and defined for - %. <5y < %. Then the velocilty potential corre—
spending to this vortex sheet 1s given by the expression

b
3T s = - 2 Ad ” dx1 8
oe7,2) EI% del‘/f: [(z—xy) 5+ (3y1) 422172 ©)
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When Adg = constant, a single horseshoe vortex results.

Supersonic theory.— For supersonic boundary-value problems
agsociated with plan forms as indicated in filgure 1l(a), where the
known condltions are given In the z = 0O pleane, the general solution
of equation (5) 1s given in reference (1) in the form

s -5 [ @) @G-8 -(n-o) (5 s) o

(9)

whers

J (x—x3 )°—p% (y=y1 VP~p%(2—21) ©

and the subscript s on the parentheses indicates that the function
is to be evaluated at z; = 0. The region T is that portion of ths
X1¥1—plane bounded by the leading edge of the wing, the llnes parallel
to the x—axis and stemming from ths lateral tips of the wing, and the
trace in the z; = 0 plane of the Mach forecone with vertex—at the

point X,y,z. The sign | is to be read "finite part of"

and was introduced by Hadamard (reference 6) as a menipulative
technique with the property that

fxo A(x)ax _ ,xoA(x) Alxo) , _ _ 2A(xo) (10)
e (xex)?2 U, (xgx)%77 (xo-a)

For purposes of calculstions, this was modified in reference 1 to

Xo  A(x)ax - * Alx)ax G
L‘ ————(xo—x)s/z [ ——-———(xo_x)a/z —F (a) (11)

the asterisk indleating that no upper limit 1s to be substituted
into the indefinite intégral, the latter belng determined as

F(x)+¢C
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where
¢ = lim [ 2h(xo) _ F(x) J
X > Xgq VX=X

Equation (9) is the direct anslogue of equation (6). The terms
1 1 1 3 1
—_—{ == —_ o to th loclit tentlal at
Bm rc>s and 5w <¥1 rc>s are equel to e veloclty potential a

X,y,z of a unlt supersonic source and doublet sltuated at the point
X3,¥1,0, vwhile the remaining terms In the integrand determine the
distribution of source and doublet strength and are dstermined by the
known boundary conditions.

When the potentlal function associated with a lifting surface 1s
to be evaluated,

le le

and equation (9) reduces to the form

= L o 1
¢ (x,7,2) = 211'[__[ Ldg (le rc>s dx3dy; (12)

In application, the region of integration in equations (7) and (12)
can be divided iInto areas occupled, respectlvely, by the plan form
and the wake region. Thus, for equation (12),

o (x,7,2) = —zp2 ff Adg dx;dy,
BN = o [(x—x1 )2—p2(y—y1)2—p2z 2]3/2
plan form

zp® Adg dx;dy) (13)
~en f[ake (=, )2-B2(y-y1)3-BZ22]3/2 3
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Equation (13) presents a formal solution for the calculation
of veloeclty potentlal and, subsequently, downwash for a given surface
in terms of Adg. Since Ady was related directly to load distri—
bution in equation (3), it 1s apparent that the various known
solutions to lifting—seurface problems are directly applicable. The
fact that supersonlc theory permlits the determination of load
distribution 1n closed analytic form for many simple plan forms
provides a distinct advantage that 1s lacking in subsonic theory
wherein virtually all known results are avallable only in numerical
form, Thus, theoretical analysis of problems involving supersonic
flight speeds can be carried further before recourse to numerical
methods is necessary. '

APPLICATIONS
Value of Potentlal Function at x =

It is possible to show, from eguatlons (7) and (12), that the
potential functions corresponding to a wing with fixed load distri-—
bution are ldentlal at—x = o for incompressible and supersonic
flow. Assuming Ab, Xnown, the values of & (x,y,z) for the two
cases are glven, respectively, by the equatlons

_ 2 Ay dx;dya
2w s [ [ (e R e
plan form

z _ Alg dxdya
¥ Hf [k [(x—=x1 P+(y—y1)3+22 192
wake
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and
_ —P3z Abg dx38y1
*(x,y,2) = on /f [ (x—x1)2B3(y—yL) 2-B2z2]%/2
- plan form
_ B2 ff Alg dx3dy)
o M e [ (x—x;)2p2(y—y1) 2p222]%/2

Since, however, Ay 1s finite, it follows immediately that for
fixed values of y &and 2z +the Integrals over the plan form in both
equations approsch =zero as x Increases indefinitely. Thus,
denoting by xp g, the value of x3 at the tralling edge of the
wing, the potentlal functions at x = » are glven by the expressions

[+2]

o ) = 11 -Z—-fg 20, ( ) f axa
0,3 52 -x_;“m e :g s(Xp m..7 )45, [ (x—=x1)2+(y—y, )2+22]3/2

- *1.E.
and
—z B2 g * dx;
W7, %) =x]im°° en [%MS(XT'E'JJ')GJI;C/T"E [ (z-x1)2-p2(y—y2 ) 5-p%22]%/2

These relatlons can be integrated once to give for the subsonic case

(x—=x;) ®

b
—z, 2
W 7,z) _ximm EI%MS(LT'E',yl)dyl {[(Y—Y1)2+22] (=1 )2+ (y=y1)%+2%
X

I,

b
z A (Xq.g,,¥,)4y;
(7—521)3+22 (Lhe)

_z
T 2m b
-]



and for the supersonlc case

*

_ -2z .% (x~x3)
¢l,3,2) _xjffbmn 2x ['g 885 Lpg. o) &, (y—y1)2+22] m—ﬁz(r—h)a—ﬂazz}%l.

b
_ T f2 Mg (xp.E,>7:)47)

Can ()P (24)

From these equatlions, it follows that the sidewash and downwash at x = e are invarlant

with Mach numbey provided the load dletribution is fixed. In fact, their values depend solely

on the gpanwise load distribution, since the terms corresponding to the chordwlge distri—
bution disappeared in the emalyasls. This has been polnted out elsewhere in the literature.
It should be stressed, however, that the result which has been cvbtalned here states that
equal span load distributiome In the two cases yleld equal values of the potemtiel functiom
8t X = w, This does not Imply that a wing at low and supersonic sgpeeds maintaine the same
potentlal functiom at Infinity. When the wing 18 kept flxed, the dlatribution of w on
the wing is fixed, but the load dlstribution is a fimetion of apeed.

Downwash On and Off the Wing

As e further spplication, the unswept wing of infinite span will be treated for super--
sonic speeds. In thls case, as 18 well kmown, the Induced velocities are zero at all points
downstream of the upper and lower Mach waves atemming from the trelling edge. An abrupt
Jump in vertical velocity therefore occurs at the tralling edge of the wing. Consideration
of this Jump for the umewept wing furnishes considerable inaight into the nature of the
mathematical difficulties inherent in the caloulation of downwash on and off wings of
arbltrary plan form. The calculation for the particular case will therefore be followed by
a more gemeral discussion which will be of valus in conmection with the later treatment of
the triangulsr wing.

1T
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Unswept wing of ipfinite span.— The pressure distribution for the wing of Infinite

aspect ratlo 1s congtant. For this so—called Ackeret—type loading R —2 is equal to %,
80 that, when the leading edge lies alongthe y-exls,

Vo [Talp 2ay
A¢B=—°f —dx=—L2x (1%e)
2J, 71 B

where o 1is angle of attack. Tn ths wake

_f @ 2:v° o (15b)
0

O

o

The downwash, or vertical velocity, will first be found when the point is between the Mach

waves from the leading and trailing edges and then when the point is downstream of the
tralling—edge wave.

Since the wing is of infinite width and experiences no variation with y, 1t is
possible to consider the problem at y = 0. Thus, from equation (13), for the case when
the point under consideration is between the Mach waves from the leading and trailing
edges with 1ts forecaone cutting the wing as shown in figure 3(a),

1P 4 € Z422 'é'/,/ (x—x1) 2-p%22
o = Llim —2B*Voa dys

i, | 2 f
€>o0 W % e A e ) 2oy, 221/

029T °ON NI, VOVN

a1



where the symmetry of the problem wlth respect to the y)—-exis has been used. Computing the
finite part of the integral

14m QZEVOG i[x—B Ieaﬂe Xy dxl______ (16)
e T o e )opPa? 1 s Pp e PP
and
3 3 . 2sploue f"ﬂ e 2422 Xy dxy (a7)
V== —
dz 3z €20 «x o [(x-x,)28222] 4/(z-x,) 5 pRe=-p2z2
Fquations (16) and (17) can be evaluated directly to give the results
v
O = — LOL _E_. (x;tﬂz)
B |z]
(18)

w:—vou.

9T

0S9T °"ON NI VOWN




For & point behind the traiiingedge wave (fig. 3(b)), the two quantities can be
deten_nined in a similar menner. Thus,

o= 1im —Ezﬂvomefco - Xy dx;

e>0 m I [(xx2) 5222 (. )2 8222 p2e?

029T °"ON NI VOVN

(19)

dy1

, 2uBVoac f% ¥e—<)2-p=2= fx—B Yy1%4+2® dx;
— .
[s]

[(x-21) Bp2y, 572 2] 3/2

Co

and w is given by the partial derivative of & wilth respect to z. The term containing
the single integral is zero, since the Integral ltself is bounded for all values of e,
while the term containing the double integral is readily calculeble., Thus, the values of
the veloclty potentlal and the downwash for e point behind the tralling-edge wave are gilven
by the relatlons .

°=‘T|‘;_’|' (20)

These results are the familiar equations assoclated wlth two—dimensionsl supersonic flat—
plate t}}eor:)r. :

LT
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The point of principal interest in this development 1is the
Jump in the Induced vertical velocity w in passing from a point
Just ahead of the tralling—edge wave to a point immediately behind
the wave. A study of equations (17) and (19) shows that this Jump
is the result of the discontinuity in the contribution to the down—
wash of the term containing the single Integral. Ahead of the
tralling-edge wave, thls term ylelded the result that

W= —'Vam

whereas behind the wave, the contribution of the term to w was
zero.

The method of attack used in the study of the unswept wing can
be generalized to apply to arbiltrary plan forms. A dlscusgion of
this case follows.

Arbitrary plan forms.— As will be shown labter, for any plan
form with supsrsonic trailing edge, the Jump In the value of w
in the plane of the wing at the tralling edge can be calculated
directly by means of simple momentum methods. At this point, how—
ever, it is of more interest to consider in a genral mammer the
nature of the integrations lnvolved when the point x,y,z 18 either
ahead of or behind the trailing-edge weve. Figuree 4(a) and 4(b)
show & plan form with a stralght trailing edge with areas of Integration
indicated for the polnt P 1in each of the two positloms. (The
straight tralling edge is not a necessary restriction and is only
introduced for convenlence of notation.) The reglone of. integration
are divided under the assumption that the flrst integration on the
plan form in equation (13) will be made with respect to yi. When
the point P 18 ahead of the tralling-edge wave, therefore, the
contribution of the wake 1s zero and the integration over the plan
form is made to conform with regions I and IX. When the point 1s
behind the trailing-edge wave; three Integrals are evaluated
corresponding to regions I, IT, and ITII. In the case of the Infinite
aspect ratio, unswept wing region I was, of course, nonexistent and,
in general, no esgentlial diff'iculty in regard to the limits of
integration 1s introduced by this reglon regardless of where P 1I1s
situated. In region II, however, the problem must be treated in
more detall.

Congider first the case when P 18 ahead of the wave and denote
by ®11a the contribution of one side of region II to the total

potential. Then Ll
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—Bzzfx—B 4/€2+22dx & ! AY; (x1,71)dy2

x : +e (221 ) 5pE(y—y, ) 5p2R 8/2 (21a)

®1Ta .=el_§ﬂo o

where

Y, =5y + %/(x_xl)z_szzz

Similarly, when P 1s behind the wave and the same subscript
notation is used to refer to one side of region II, the valus of

178 1is

2Z Co Y]_ AD 5 .
®7Tg = 1lim i f dxlf = 21 éxz._yj-):yla 218 /2 (211)
€>0 2x Jg y+el (x=x1) 5% (7-71)2-p%2%]

where Y; 1ls as defined above.

The contributlons of the other side of region II to the pétential
will not be considered separately ag the behavior is identical. When
P liles shead of the wave, € appears in the limlts for Integration
with respect to both y; &and x;. This corresponds to the situation
in equations (16) and (17) and, as for that problem, the limiting
procoss is carried out after the integration 1s completed. When P
is behind the wave, 1t 1s not necessary to defer the limiting process,
since

= _Bzzfco le Aby (x1,y1)dy:
*ITa en Jy €>0lJypre [(x—xl)a—ﬁa(y—yl)z—ﬁzzzl‘?’;

and 1if {} represents the Integrand, then

LYo\ o {Jen
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But since

My (Xy,¥1)
[(x—=x1)2-p3(y—y,) 2-p2]3/2

IA

M

for cog £x3 < 5 (i.e., l 1s boumded for all values of x; in the
Interval of the flret integration}; and further, since

- + &
1im M&/Ay dy: = 1im Me = O
€-=>0 2 €E>0

therefore, for P sltuated behlnd the tralling-edge wave, the
contribution of region ITa 1s given by

_ —$%z o T2 A% (x1,y1)dy:
*TIe T o fx dxlfy ) 2627y Lp%m52 © &2

Equation (22) will be applied directly in the determination of
downwesh behind the trianguler wing. The significence of the result
1g that, when the point- P &t x,y,z 1s behind the Mach wave from
& supersonic trelling edge, the limiting process associated with
region II need not be considered. When P 1is ahead of the Mach wave,
the term € must be retained in the analysis and the limiting process
used. As wasg previously noted, the general analysis developed in
this report places no restriction on the orientstion of the trailing
edge; however, it should be pointed out that region II exists only
for the cese iIn which the trailing edge is supersonic. Therefore,
the jump in downwash, obtained from the integration over regiom II,
is assoclated only with supersonlc trailing edges; whereas both the
downwash and loading are continuocus acrogs a subgonic trailing edge.

Triangular Wing

Consider a triangular wing (fig. 5) with leading edges swept
back of the Mach cone from the vertex. The loading over the wing
is known to be (references 7 and 5)
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A_P _ LI-QOZCDCJ_
q EoB ¥/60%x;%p3%y, 2

(23)

where E, 1s the complete elliptic integral of the second kind with

modulus kg = #1-6,2 and 6, = B tan 8, ® being the semivertex
angle of the triangle. From equation (3)

A%y = H /0602x,2-B2y,; 2 (24)
wheres
20V
H=—2 (25)
EqB

Sufficient information i1s now at hand to permit the use of equa—
tion (13). Setting, for convenience, ® = &p+ &, the velocity
potential at x,y,z 1s given by the sum of the two expressions

zZHpZ /603x,2p3y: 2 dxy dys
® = - 2 -2 2 o2 215/2 - (26)
en plan form [(x—x1)5B=(y—y1)B=2%]
zHR2 L/:/“ ¥802coPp2y12 dx; dy: (27)
= 2x wake [(x—x;)2-Bp3(y-y1) 3pZ2Z]3/2

Equation (26) represents the contribution to the velocity potential
furnished by the doublets dilstributed over the plan form,whille
equation (27) represents the contribution furnished by the doublets
within the wake. The latter equation is the mathematical equivalent
in supsrsonic flow of the subsonlc veloclty potentlal of a sheet of
horseshoe vortices corresponding to an elliptic span load distri-
bution. Equations (1da) and (14b) showed that the expression for
¢y at x = o 1s ldentlical to the veloclty potential of the
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subsonic vortex sheet. However, in the vicinity of the x = cg
line, the behavior 1s entlrely different.

In the present report, equations (26) and (27) will be applied
only to the determination of downwash along the center line in the
weke of the airfoil. Further extensions are limited only by
difficulty of integration. It will appear in the development that
recourse to numerical methods 1s probably necessary in general.

Downwash induced by doublets in the wake.— Setting y =0 in
equation (27) and integrating with respect to x;, 1t follows that

= ___ZH(x"CO)fyl ¥680%co®—B3y12 dyy (28)

2n 1Y, (712+22) ¢/(x—<o)2Pp3y2p222

Oy

where the limits on the integral are not yet specified, since they
differ in the regions A end B Indicated in figure 5. In elther
case, however, the limits are seen to be the roote of one of the two
radicals In the integrand.

In order to derive an expression for downwash in the plane of
the airfoil, it is convenlent to express equation (28) in a different
form. Integrating by parts

Y
oW _ 480%™ L ya (x—co) ] 2
H 2n z f(x—0) 2By 5832 Ly,
B2 Yy Y1 yi(x—gy)
+ — tan 1

arc
en Ly, #8o%co By ® z ff (x—co) %3y *p%=

' W
This form of the equation 1s easier to treat when 1lim —— 18 %o
Z —> 0 Oz

be consldered. In hoth regioms A and B, 1t can be shown that wy,
the contribution to the downwash made by the doublets In the wake,
is given by the expresslon
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2 Y1 z 2
Wor = — HB (x—Co) _Bzy'l a (29)
W . > o 2 471
2n(x—co) Jy, BoZco® B3y
8oCo
In region B, . Y¥; = « Uslng the fact that the Integrand is
an even function and Introducing the notatlion
x
Xo = — | n = B2 (30)
Co Coeo
it follows that
-
1— Fo_ 2
=7 2
HB o 1-1
Setting ki = 22 and noting that k; < 1 in the region, the
JCQ—l
expression for Wir In region B 1is
'W'w‘ = - EE' El (31)

k1Y

where E; 1s the complete elliptic integral of the second kind and
the subscript denotes that the modulus 1s k;.

In region A
r - %

By means of the transformations

X
X = ——— . T]:-—-
Co
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the integral is transformed toe tlie form

— I e e e _Q_T]
Hp L\ 6g_N\E

Tl = TIE

—1

Setting ko = f‘é_; = -i=, noting that ke< 1 1n region A, and
[»] 1

introducing Jacoblan elliptic functions in the transformation

M = sn u, we have '

WigTt Ke (1=kp®)KE
LJ :—kgf crfudu = _L--_;'E it (32)
o &2

where Kz and Ez are complete elliptic integrals of the firsgt end
second kind with modulus kg, '

The values of the downwash given by equations (31) and (32) can
be presented in terms of w,, the downwash on the wing, where from

equation (25) and from the boundary condition, a = %w:q
o
AR (33)
g 2 ° e
Thus,
W, Eg{1-k-2)Kp :
W E
— 2 ey e ~— i
o o ( region A)
L EE]_
e = TS { region B)

W

Figure 6 shows this variation in ‘_;_TW_ plotted as a function of X,
o

for valuss of 6, equal to 0.2, 0.k, 0.6, and 0.8.

Downwash induced by doublets on the plan form.— Along the center
line, thé contribution to the potential Tiunction due to the dlstribution
of doublets on the plan form is given by equation (26), where the value
of y 1 zero, Just ag In the case of the wake distribution, it is
seen that the nature of the solution changes in passing from region A
to region B go that the derivations for these regions will be glven
independently.
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In reglon B, no singularities occur in equation (26) so the
finite part sign can be disregarded. Since, moreover, the Integrand
1s an even function of y;, the expression for velocity potential
becomes :

QQI]_
pr - B % e [
(o] (o]

+/o olez-ﬁay 12

[(x—=x1)2-p2y,2p2,2]8/2 dya (34)

After changing variables by the transformastions

Bys OpX1

E = k =
| o (x-x1)2-p222

equation (34) becomes

= dx dg
8o%x1 . (l—k2§2)37§

Substituting £=sn u and noting that s&n K=1, sn 0=0 where X 1is
ths complete elliptic integral with modulus k, we have

Co B3 Co
op = — -'Z-E—Bf ekx dx; ﬁ cd®udu = — ___'zi[B f (EE)dx,
o o+l o o o (x—x1)2-p222

The d%v(r;lwash wp 1In the z=0 plane can now be found by consldering

lim ——. This leads to the result
z—=>0 oz

C

WP=__1§rﬁf°LK_—E_>dxl
o

X=X

whers the modulus reduces to
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k = 20%1
X=Xy

Rewriting the equatlon so that— kX 1s the variable of Integration

and k; = _22_ '
Xo—l

wpt E-E
= < —f k0 dk (35)

As 18 to be expected, the wvalue of Wp is seen to approach
Z2ero a8 Xp becomes iInfinitely large. The upstream boundary of
reglon B lles at xp=148p &and, as will be seen, wp 1s continuous

at this point.

Conslder now region A. In this case, the traces of the Mach
forecone of the point (x,0,z) cut across the plan form. For ease
of calculation, the area within the wing leading and tralling edges
and the traces of the forecone will be divided into two parts. Thus,
meking use again of the symmetry with respect to the x,—axis,
and also the results dlscussed in connection with equation (22), 1t
follows from equation (26) that

exl
X1 o 2 2 2 2
2 Pa X1 -
Y
(o) o)

b1 [(x_xl)z_ﬁ23_12_6222]!3/2

¥ (x-x1)2-p222

2 £ 2.2 22
- e [ Yootxy*p%, ayy (36)
Xy o [(x—x;)2-p2y,2-B272]3/2

where

x— /0o2x2+B222(1-6,2)
1~9,2

X, =

The reduction of the first double integral in equation (36) can be
carrled out by methods exasctly equivalent to those used in reducing
equation (34) to (35). As a result of this calculation, the contribu—
tlon mads to Wp in the plane 2=0 by the first double integral is
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_EB TEE
pid o k+eo

(37)|

In the second double integral of equation (36) the following
substitutlion 1ls made

By1 K - /(x—xl)a—ﬁaza

o (x—x,) " —p%2® 6,X1

Then, if

T = f%/(x_xl)z_ﬁazz ¥680°x1 2512 ays

[ (x—x, )22y, 2p225]1%/2

I can be written
2§2

at
" BOoxiks f (1 —¢2) 372

The Integration can best be completed here through the use of equa—
tion (14) where

/122

M - e

and the auxiliary transformation ¢ =snu 1s used. As & result of
this calculatlon

I=—2 (k&)

BE x1 k2

g0 that the second double integral of equation (36) is equal to -

ZHB f Co R-=E
— d_x;;_
T

6 Oxlkz
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Uslng methode simllar to those employed in the derivation of equa—
tion (35), the contribution to wp 1s found to be

HB [°_EE _ 8
T /f k2(1+0,k) = (38)

-1
where Xz = To=, Equations (37) and (38) may now be comblned to
2]

o]
give the total downwash in region A induced by the doublets on the
plan form. Thus,

ko 1
Wpn K-E K—E
B —_— 3k - —= dx (39)
HpB /: K2(1+6ok) j; k+8,

The integration of-equation (39) requires numsrical methods. A
slight simplificatlon can, however, be introduced by using the known
value of the downwash w; Just behind the tralling edge. As will
be shown in the next section,

Equation (39) must, of course, yleld this result for x, on the
tralling edge, that 1s, for xg=1 and kz=0. Using this relation
together with equation (39) 1t follows that -

W'Pﬂ 3 T kg o
= o2 (Eo—60) + ) 2 (1305) dk (k0)

Values glven by equations (35) and (40) are consistent at the
point ki=ko=1, that ls, at the point where the Mach cones from the
two trailing—-edge tips intersect on the x—axis. By means of these
equations, the contribution to the downwash of the doublets distri—
buted over the plan form i1s determined. '



NACA TN No. 1620 29

In summary, these relations are

W, E -9 ko
P o~‘o 2 K-RE
—_ =20 _ dk lon A
Vo  Eg nth/o' K2(1+05K) (region A)
k
Wp _ 2 1 &
ol —ﬂEo L yTrpe dk (region B)

W
Figure 7 shows the results of the integrations, the functlon W—P

belng plotted as a function of x4 for various values of Bge °

Condltions at the trailing edge.— The value of the vertical
Induced veloclty immedlstely ahead of and behlnd the traillng-edge
wave must, of course, be determinsble directly from equations (21)
and (22), respectively, by setting x=¢o * zB. If, however, the
discussion 1s restricted to the 2z=0 plane, & much simpler method
exists for finding w at these points. The approach taken here
follows essentially that glven by Lagerstrom in reference k.

Let conditions Just shead of the trailing-edge wave be denoted
by the subscript 2 and conditions Just behind the wave by the
subscript 3. Figure 8 shows & section of a given wing in the plane
y=constant. The Mach waves at the leading and trailing edge make the

1

angle u{=arc sin M with the 2z=0 plane, and the wilng is presumed

to be at angle of attack . Assuming the trailing edge to be

normal to the free—stream direction, the variation in the x—component
in velocity when passing through the trailing-edge wave can be treated
as a two—dimensional problem with the condition imposed that wug=0

in the 2z=0 plane. It is known that continuity of flow together with
balance of tangential momentum across the wave lead to the result

that the component of velocity tangential to the wave 1s continuous.
The tangential components of velocity lmmediately ahead of and behind
the wave are given, respectively, by the expressions

(Vt)2 (Vo+uz) cos L + wp sin i

(Vt)s

Vo co8 B + Wg s8ln p
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Equating these relations,it follows that

Wg = Wpo +'|J,2 COt;IJ.

v
= — Voo + %ﬁ<%£>2 (41) -

For the two plan forms which have been considered, equation (41)
gives the following results

(a) Unswept wing of infinite span

In thls case
(éa) _ e
a4 B
and . . -
Ws=—vo°°“"%:ﬁ %"l=o (42)

Equation (20) showed that this result actually applies to all points
behind the Mach wave.

(p) Triangular wing

From equation (23)

( Ap 4o Zac

_q - EoB 4/_9_05002—325’12

fram which 1t follows that

N (1 - 8070 ) (43)
° ° Ky ’/902‘302"323’12 .
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Setting y1=0 and introducing E Zfrom equation (25)

W, K
2= -2 (50) (14)

vwhich is the expression used in equation (40). These results are
equlvalent to those glven by Lagerstrom in reference 4.

Values of downwash near center line of wake.— The values of

downwash, which were obtalnsd on the center line of the wake, wers
worked out 1n exact detall and subjected to no restrictlons other
than those orlglinelly imposed by the use of the linearized equations
of flow. It 1s possilble, moreover, to get an indicatlon of the
variation in the downwash function in a portion of the wake for
points near the center line through the use of & generalized Taylor's
expansion in the vicinlty of the line y=z=0., The next higher terms
in the expansion can be found wlthout too much dilfficulty for the
reglon bounded as follows

1 1
-_—=D < <_D
() 2 I 2

(b) Both y and 2z 1lying within the Mach comes from the
tralling—edge tilps

The problem resolves ltself into one of finding the first
nonvenlshing coefficients of y, and 2z, 1n the serles

w_o_ 2 2 -
7o = A +A12+B17 22 240227 o +B2Y o Fe e« (45)

The value of Ay has, of course, already been computed and is
known from equations (31) and (35) to be

_.2 1 g
ho = 2 <E o ER d.k) (46)
o]

where k; = —29—.

X1
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The coefficient B 1In the expansion is known to be equal to

g—~ The evaluation of this term follows a devlopment similar
Jo
yo=o

to that used for equations (29) and (34) except that y is retained
in the analysis. The derivation ylelds the relation

a

wio 1 f °_n [lxel)A(yom)®
B 2xl)Lg, o1 6,2-n2
1 £9¢
- - U/ﬁ dgu/q d 2% 575 47
2 ‘g0, [(xg)*~(y —n)2] /2 "

Carrying out the differentlation, with proper regard for the singu—
larity in the first integral, it follows that By = 0. Similarly,

1t ocan be shown that Caz = 0, while the coefficient Ba = = 32">

2
1s given by the expression . B} 2 Byo

Yo=0
1 ok, 2
By = ———( 2K; — T,
2 2
TEobo 1-kq

(&7)
Iy
1 1+k2 1
_______._f (kwo)[g = __x Jd.k
B0 2%02J o (1x2)2 1-k2
h n ok = —2
where agaln 1 = g_I-

In order to calculste the varlation with z, 1t 1s necessary

o
to evaluate A4A; = ( >
Zg 25=0
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where
e (z—c0)
o v x—C
—=Bf 212- = arc tan = 2o =23 W1
HB o ¥/B80%co®B3y1 z f(x—co)5p2yL5p%2
o eoxl
o) 522 )
- zﬁf dxlf B v Ole —32.7'12 — dy,
o s [ (1) 2—8%y1 %p%2"] _

The double integral contrilbubtes nothing to the coefficlent, and the
remaining portion of the expression can be evaluated without
integrating by differentiating twice and using Cauchy's integral

theorem
f(yi)dys
i —c
(712 =iz
Thus ,
(48)
1 2
Ay = — —
* Eofo |zl

The coefficient A, will not be evaluated, since the first
higher order term in 2z has been found. Thus, to the first order
in y, end z,, the downwash function N is

Yo
ky
: ~
1=i<El+/ £ dk>—zo E (49)
Vo 7o o Y90 Esbo |z]
DISCUSSION

Wy
The variation of “-rﬂ-, the downwash due to the doublets in the

o
wake in terms of +the downwash on the triangular wing, was glven in
figure 6 as a function of X, for various values of 6o. This

digtribution of downwash along the center line of the wake can be



3k NACA TN No. 1620

W, - Xy—l
presented as a single curve if ;H-Eo 1s expressed in terms of g .
o

o
A greph of thils function is shown in figure 9.

Figure 10 presents the resultant downwash on the center line
induced by the doublets distributed over the wake and over the plan
form. This 1s the camplete value of downwash on the xj—axls and

ghows that, following the discontinuilty In downwash at the tralling

edge, the magnituds of éﬂ bulldes up Lo 1lis asymptotic value and
o

achieves an almost constant value within approximately one chord
length aft of the tralling edge for values of 9, less than 0.8,

The table glven on the flgure relates 68y to free—stream Mach number
M and to B for the partlcular case of a triangular wing with lead—
ing edges swept back 45°.

It has been shown that at x = o +the downwash has the same form
For both incompressible and supersonlc flow, provided the span load
digstributions are equal. An exact solution for the downwash on the
center line of the triangular wing has been developed and extendsd
to include a region near the center line of the wake by means of an
approximation (equation (45)). A measure of the exactness of the
approximation may be obtained by comparing these results with the
exact results for the Incompressible case for an elliptic span load
distribution, as obtained from reference 8, page 151. Figure 1l
ghows the exact values of gL for Incompressible theory for

Q

o< gg <0,3 and 0< ;2 < 0.3. Also Included are the lineaxr approxi-—

o]
mations In supersonic.thesory to 5?—Eo fPor the same range of the

geometric varisbles. The span load distributions for both wings are
elliptical, but, in order that the same value of 1ift 1s maintalned
for the low— and high-speed cases, the angile of attack must be
modified. This accounts for the use of the factor E, in one spt

of ordinates. It is apparent from the comparison that, at a large
distance behind the wing, the approximation of equation (49) ylelds
results within 4 percent of the exact value for the reglon considersd.

In applicatlon, 1t is desirgble to know not only the order of
the varlables retained in the analysls, but also the magnitudes of
the neglected terms. In thls respect, equation (49) does not supply
as . much Informatlon as might be deslred, since no estimation 1s
furnlished of further coefficlients in the series. It appears, however,
from the nature of the agreement obtulned in figure 11 for conditions
at a large distance. from the wing together wilth observations as to
the asymptotic behavior apparent in figure 10, that equation (49)
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furnishes a reagonable estimate of downwash in reglon B, provided
that the point of calculation is not in the immediate vicinity of
the tip Mach cones. For values 1n region A, no concluslons can be
drawn from this investigation about the varistion of downwash with
respect to 2z. The spanwise variation indicated by equation (49)
agrees with the value given by equation (43) at the trailing edge;
that is, to the first order In y, +the downwash is a constant.

Thus, in the xy—plane, equation (49) can be expected to glve a
reasonably close estimate to the downwash near the center line and
away from the tip Mach cones for all points behind the tralling edge.
For variation in the z—direction, however, the validlty of equation (49)
1s restricted to.points in region B.

The behavior of the downwash In the vicinity of the trailing
edge Indicates that In this region an lmportant difference exists
between lifting-line theory in supersonic and in subsonic flow.
Figure 6 shows the varilation of downwash along the center line of
a doublet sheet (1lifting-line theory in incompressible flow) with an
elliptic span load distribution. The error introduced by not using
the chordwise distribution of load ls given in figure T and 1s
slizeable for sbout one chord length back of the wing.

The methods of analysis presented here were shown in the first
application to lead immedistely to the value of the potential
functlon at x = =, and thus provide s ready method for the deter—
mination of vortex drag of a supersonic wing.

A more detailed study of downwash behind the wing will necessarily
involve considerable labor. The methods glven 1n the report are,
however, general and are directly applicable.

Ames Aeronautical Laboratory,
Natlional Advisory Committee for Aeronautics s
Moffett Fleld, Calif.
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{a) Plan form

L a4y 4%,

o~

2 pY > X 8 5. Y

(b) Sections showing distribution of Ag,

Figure |.— Skefch showing arbitrary lifting surface together

with distribution of AF‘s: the jump in perturbation velocity
potential in the plane of the surface..
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Aé(y) y “

pd
e

b/2

-Y

Figure 2.-Vorfex sheet with bound vortices on y-axis and
distribution of circulation equal fo A¢$_

-I'D(x.y.z}

X

(a)Point P ahead of trailing edge (b} Point P behind trailing edge

W

Figure 3.- Areas of integration for infinite span wing.
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Plxy,z)
(a)Point P ahead of trailing edge (b) Point P behind trailing edge

Figure 4.- Areas of integration for arbitrary plan form with
supersonic trafling edge.

= Yo

X,= x/¢€,

Vo= VA%,

Region A

|
i

Region 8
Y

Figure 5. - Triangular wing swept behind Mach cone
showing location of regions A and B.
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10 /4 /8 22 2.6 3.0

x, ,Distance in chords

Figure 6 .- Variation of the part of downwash on x-axis
induced by doublets in wake with distance downstream

in chord lengths, x,= x/,. Triangular wing.

Lo

X, , Distance in chords

Fligure 7 -Variation of the part of downwash on x-axis induced

by doublets on the plan form with distance downstream in
chord lengths, x,= x/c,. Triangular wing.
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Figure 8. -Sketch of velocity vectors of the air before reaching,

on, and after leaving supersonic airfoil.
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.8
Wy

—FE, .6
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%0 7 3 3 p]
x,-1
&o = -_-\-N'A‘cﬁ/—.

Figure 9. -Downwash factor induced by doublets in wake ,wyE_/W,,
plotted against factor representing distance downstream

from trailing edge, (x,- 1)/ 8,. Trianguiar wing.
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Figure 10. - Variation of the total downwash on x-axis behind a Iriangular wing swept

behind Mach cone with distance downstream in chord lengths, x7 x/c, .
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Figure Il.-Dowmvash at a large distance behind a wing with
elliptical span loading in either subsonic or supersonic

flight compared with first order expansion determined
from equation (44).



